Epigenetic

DNA and Chromatin Structure

Nucleosomes are the basic building block of Chromatin

Figure 4-24 part 2 of 2. Molecular Biology of the Cell, 4th Edition.

3 nucleosomes shown here

30 nm fiber packing (Solenoids)

Loop Domains

There are two types of chromatin found in a nucleus at any given time

VS.

<u>Heterochromatin</u> Highly condensed in interphase

Transcriptionally inactive (contains few genes)

Replicates late in S phase

<u>Euchromatin</u> Organized in 30nm fiber during interphase

Transcriptionally active

Replicates early in S phase

Post-translational modifications

Post-translational modifications

Table 13.6 Examples of posttranslational chemical modifications

Modification	Amino acids that are modified	Examples of proteins
Addition of small chemical groups		
Acetylation	Lysine	Histones
Methylation	Lysine	Histones
Phosphorylation	Serine, threonine, tyrosine	Some proteins involved in signal transduction
Hydroxylation	Proline, lysine	Collagen
N-formylation	N-terminal glycine	Melittin
Addition of sugar side chains		
O-linked glycosylation	Serine, threonine	Many membrane proteins and secreted proteins
N-linked glycosylation	Asparagine	Many membrane proteins and secreted proteins
Addition of lipid side chains		
Acylation	Serine, threonine, cysteine	Many membrane proteins
N-myristoylation	N-terminal glycine	Some protein kinases involved in signal transduction
Addition of biotin	lysine	Various carboxylase enzymes
Diotriviation	Lysine	valious carboxylase enzymes

Me Me Me Ac P Ac Me Ac Ac Me Me P I I VII I VI I VI H3 A R T K Q T A R K S T G G K A P R K Q L A T K A R K S A P 10 20

Epigenetic

- History of Epigenetic modifications
 - Discovered by **Paul Kammerer**, a lamarckian evolutionist, in the 1920s.
 - *Epigenetic* was coined by <u>C. H. Waddington</u> in 1942
- Definitions
 - In 2008 → <u>Cold Spring Harbor</u> meeting
 - Stably heritable changes in a DNA without alterations in the DNA sequence",

Characteristics of epigenetic modifications

- Epigenetic changes can modify the activation of certain genes, but not the sequence of DNA.
- Epigenetic changes are preserved when cells divide.
- Some epigenetic changes can be transferred to the next generation.

Gene expression

Role of Genomic Cis-Acting Elements

Trans-acting factors bind cis-acting elements

Epigenetic modifications

DNA modification

Histone modifications

DNA methylation

CpG Islands

- Regions of the genome in which the CpG dinucleotide occurs at the EXPECTED frequency
- Usually located in 5` flanking sequence, around the proximal promoter, and/or within the first exon and intron

DNA methyltransferases DNMT1 (maintenance) DNMT3a (de novo) DNMT3b (de novo)

DNA demethylase? Base excision repair GADD45b pathway MBD proteins TET1 pathway

DNA methylation readers MeCP2 MBD1-4 Kaiso protein family

DNA methylation silences gene expression by two mechanisms

Histone modifications

Figure 4-27 part 2 of 2. Molecular Biology of the Cell, 4th Edition.

Detailed View of Chromatin and Transcription

Nature Reviews | Cancer

Histone code hypothesis

 The histone code is a hypothesis that the transcription of genetic information encoded in DNA is in part regulated by chemical modifications to histone proteins.

Mechanisms

 Cis mechanism→ altering the structure of chromtin

 Trans mechanism→ generating a banding platform for effector proteins

Cis mechanism

Modification	Modification Structure (R = chemical functional group)	Charge	Effect	
Methylation	R-CH ₃	Neutral	Increases packing	
Acetylation	R-COCH ₃	Negative	Decreases packing	
Phosphorylation	R-PO ₄	Negative	Decreases packing	

		Enzymes				Recognition	Eunctions in	
Modifications	Positi	on	S. cerevisiae	S. pombe	Drosophila	Mammals	Module(s) ^a	Transcription
Methylation	H3	K4	Set1	Set1	Trx, Ash1	MLL, ALL-1, Set9/7, ALR-1/2, ALR, Set1	PHD, Chromo, WD-40	Activation
		К9	n/a	Clr4	Su(var)3-9, Ash1	Suv39h, G9a, Eu-HMTase I, ESET, SETBD1	Chromo (HP1)	Repression, activation
		K27				E(Z)	Ezh2, G9a	Repression
		K36	Set2			HYPB, Smyd2, NSD1	Chromo(Eaf3), JMJD	Recruiting the Rpd3S to repress internal initiation
		K79	Dot1			Dot1L	Tudor	Activation
	H4	K20		Set9	PR-Set7, Ash1	PR-Set7, SET8	Tudor	Silencing
Arg Methylation	H3	R2				CARM1		Activation
		R17				CARM1		Activation
		R26				CARM1		Activation
	H4	R3				PRMT1	(p300)	Activation
Phosphorylation	H3	S10	Snf1				(Gcn5)	Activation
Ubiquitination	H2B	K120/123	Rad6, Bre1	Rad6		UbcH6, RNF20/40	(COMPASS)	Activation
	H2A	K119				hPRC1L		Repression
Acetylation	H3	K56					(Swi/Snf)	Activation
	H4	K16	Sas2, NuA4		dMOF	hMOF	Bromodomain	Activation
	Htz1	K14	NuA4, SAGA					Activation

Table 1. Histone Modifications Associated with Transcription

^a The proteins that are indicated within the parentheses are shown to recognize the corresponding modifications but specific domains have yet to be determined.

Li e. al. (2007) Cell 128, 707

Trans mechanism

b Histone methylation

C Histone phosphorylation

Histone acetyltransferases CBP p300 ATF-2 Tip60 Histone deacetylases Class I HDACs HDAC 1, 2, 3, 8 Class II HDACs HDAC 4, 5, 6, 7a, 9, 10 Class III HDACs Sirtuins (SIRT1-7) Class IV HDACs HDAC 11

Histone methyltransferases MLL1 SetD1a Set2 SetD8 G9a, GLP SUV39H1 EZH2 Histone demethylases MJD2a

JMJD3

LSD1

PHF8

Protein kinases MSK1 MSK2 RSK Aurora B CKII IKKa Protein phosphatases PP1

PP2A

Histone Acetyltransferase complexes

Genetics: the alphabet of life

 Letters of DNA sequence carry the information

Epigenetics: the grammar of life

Environmental Factors

• Nutrition, Behavior, Pollution, Sun light, Toxins, Circadian rhythms, Viruses, Bacteria

Epigenomics

- Epigenome → complete set of epigenetic modifications on the genetic material of a cell
- **Epigenomics** is the study of the epigenome

How does one study DNA methylation ?

- Bisulphite sequencing
- Methylation-specific restriction endonucleases

– e.g., HpaII / MspI → C^{5m}CGG

How does one detect histone modifications ?

• Chromatin Immunoprecipitation (ChIP)

- ChIP-on-chip

- ChIP-Seq

Importance of epigenetic modifications studies

Embryonic development

- Stem cells
- Differentiation
- Reprogramming

Medicine

- Cancer and developmental abnormalities
- Personalized therapeutic

Evolution