Regulation of Bacterial Gene Expression
by Riboswitches




Introduction

® Microorganisms experience a wide variety of fluctuating
conditions caused by:

Changes in their surroundings

Shifting metabolic demands

® Cells must be able to:

Quantify these changes

Concordantly alter expression of gene subsets in a measured manner.




Regulation of gene expression

e Levels of gene expression regulation

Transcription

Translation

e Regulatory protein factors

® Regulatory RNA factors




RNA Factors

® Regulatory RNA structures > often used for post-
transcriptional control of essential genes 1n bacteria.

‘

Small RNA
Trans-acting RNA elements/

. Riboregulator

Cis-acting RNA elements —> located within the non-coding
portions of mRNAs
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Examples of gene
expression regulation
by ¢is- and
trans-acting RNAs.
(@) A
SAM-dependent
riboswitch located
within the 5 UTR of
an mRNA acts in cis
to inhibit
transcription of the
full-length mRNA
upon ligand binding
(16, 52, 108).

(b) During
conditions of
oxidative stress the
OxyS riboregulator,
a trans-acting RINA,
interacts with fblA4
transcripts and
inhibits translation
initiation (2). RBS,
ribosome-binding
site.



RNA Factors

e Cis-acting regulatory RNAs:

Short RNA sequences

Most of them located within the 5 -UTRs of
transcripts

Intricately folded RNAs

Carry high-affinity receptors for effector molecules




RNA Factors

e (Cis-acting RNASs in B. subtilis - greater than 4%
of its genes are regulated

Table I RNA-mediated genetic control in B. subtilis®

Number of regulated transcriptional units [total

Effector molecule number of genes; percent of B. subtilis ORFs] Gene categories

Survey of RNA-mediated genetic control in Bacillus subtilis
Protemn 21 [45; 1.1%) Tryptophan, folate, glycerol, histidine, and
pyrimidine metabolism; sugar catabolism; Rho
synthesis; Cold shock response

RNA 1933; 0.8%] Aminoacyl-tRNA synthetases; amino acid
biosynthesis and transport

Metabolite 36 [89; 2.2%] TPP, FMN, adenosylcobalamin, SAM, lysine,
guanine, adenine, glycine, and GleN6P




Metabolite- sensing RNAs

(Riboswitches)




Overview

® Riboswitches:

First in 1970s = discovered several metabolic riboswitches for
lysine

Cis-acting RNAs
Have complex sequence and structural features
Usually reside in the non-coding regions of mRNAs

They directly sense small molecule metabolite concentrations and
control gene expression (genes contributing 1n metabolite
production).

Widespread throughout bacteria
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Riboswitch Organization
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Aptamer

~70-200 nt

Highly conserved in sequence and
structure

Expression

platform
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More diverse in sequence and size

Is functional domain




Riboswitches Classes

e To date, reports of nine separate riboswitch classes have been
made:

Purine-specific riboswitches = Guanine and adenine riboswitches

FMN riboswitch = Flavin mononucleotide riboswitches

Coenzyme B12 riboswitch = Adenosylcobalamin-specific riboswitches
TPP riboswitch = Thiamin Pyrophosphate riboswitches

SAM riboswitch = S-adenosylmethionine riboswitches

Lysine riboswitch

GIcNG6P riboswitch = Glucosamine-6-phosphate riboswitches

Glycine riboswitch

Orphan riboswitch candidates
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Orphan Riboswitch Candidates

They carry large aptamer domains

Larger genetic targets > Associated with similar classes of
genes

Exhibit significant evolutionary conservation

Exceedingly widespread in bacteria




Orphan riboswitch candidates

Table 3 Orphan riboswitch candidates?®

Orphan class (downstream
gene in Bacillus subtilis)

Metabolite ligand

Associated genes

1 (glmS)

GleN6P

gimS (GlcIN6P synthase)

2 (gcvTHP)

Glycine

Glycine catabolism, metabolite transport

3 (ykoK)

?

Divalent metal transport systems

4 (yybPlykol’)

?

Cation transport systems

5 (ykkC/yxkD)

P

Nitrate/sulfonate/bicarbonate transport
systems

6 (ydaO/lyuaA)

Amino acid transport, K transport,
metalloendopeptidases,
cell-wall-associated hydrolases

7 (ykv7KLM)

?

8 (ylbHI)

?




Riboswitch Genetic Control Mechanisms

e Typically turn off gene expression in response to the small molecule

e But some turn it on




Riboswitch Genetic Control Mechanisms

Transcription Attenuation
Two predominant

— .
mechanisms

Control of Translation Initiation

Control of mRNA Processing

mRNA cleavage by ribozyme activity

Control of Anti-sense RNA (asRNA) production




Transcription Attenuation

e Intrinsic transcription terminators:

GC-rich stem-loops

Poly-uridyl tract = five to nine nucleotides

e These structural elements destabilize elongation
complexes, resulting in cessation of transcription.

e RNA elements that exhibit the structural features of
known intrinsic terminator stems reside downstream of
many riboswitch aptamers




Transcription Attenuation

RBS
L D — — —

, ' _J  coding sequence

Expression

Terminator RBS




Transcription Attenuation

2 antiterminator
A ﬁ ribosome
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Control of Translation Initiation




Control of Translation Initiation
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Control of mRNA Processing




Riboswitches Applications

® Molecular engineering of RNA-based genetic elements

e Riboswitches as drug targets




Molecular Engineering of RNA-Based
Genetic Elements

e The gene control systems most widely used by genetic engineers:

Regulatory protein
Whose function is modified by a chemical effector that must be permeable to the

cellular host.

e Disadvantages:

Their use is also limited to hosts that produce appropriate levels of the regulatory
protein

In addition, each regulatory protein is responsive to a single chemical

v Therefore a variety of protein factors and genetic elements are needed




Molecular Engineering of RNA-Based
Genetic Elements

® The harnessing of natural or engineered riboswitches:

Expand the collection of gene control systems

That could integrate with their transgenic constructs.

e Advantages of riboswitches than protein-based systems:

Simpler and more versatile architecture for expanding gene control
capabilities




Molecular Engineering of RNA-Based
Genetic Elements

® The use of natural riboswitches:
Is complicated

Because they typically sense fundamental metabolites whose
concentrations might be difficult to control at will.

e RNA engineers:

Might be able to coopt the mechanisms used by natural
riboswitches to create a collection of RNA elements that
respond to a diversity of chemical effectors.




Riboswitches as Drug Targets

® Riboswitches:

Control many fundamental genes and metabolic
pathways

Therefore, they are potential targets for antimicrobial
agents




Riboswitches as Drug Targets

e Riboswitches offer an advantage:

They naturally bind to small molecules

Drug-like compounds that compete with metabolite binding
could be identified




Riboswitches as Drug Targets

® ¢. g., Antimicrobial compound AEC:

Directly binding to lysine riboswitches

Down-regulating the expression of lysine biosynthesis genes

e Such efforts to develop riboswitches as targets for
drug action are still in their infancy.
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